Internship or Schooling? Based on Ben-Porath Human Capital (HC) Model

Lauren Qu

Department of Economics University of Chicago

October 18, 2024

Department of Economics University of Chicago

Lauren Qu Internship or Schooling?

Setting

- Consider individual human capital accumulation (HC acc), using time as inputs. The wage rate is constant.
- The individual has a fixed (flow) endowment of 1 unit of time for market activities, and life time horizon T is fixed.
- The individual decides between schooling and internship & between HC acc and work.
- Key assumptions:
 - No preference about how time is divided between market activities.
 - Perfect capital markets: unlimited ability to borrow and lend. Hence her goal is to maximize the PDV of lifetime (net) income.
- Internships offer industry-specific experience, and education offers general knowledge. Firms are heterogeneous while individuals are homogeneous.

Lauren Qu

Notations

- [0, T]: time horizon
- $K_g(t)$: General HC (accumulated by education)
- $K_i(t)$: Industry specific HC (accumulated by internships)
- *K*(*t*): Total HC, a combination of both types, calculated as
 K(*t*) = γ₁*K_g*(*t*) + γ₂*K_i*(*t*), where γ₁ and γ₂ are weights that
 reflect the importance of general and industry-specific
 knowledge in determining wages.
- s(t): share of (unit) time endowment devoted to HC acc at t
- *p*₁, *p*₂: price of education and of internship (can be negative for income)
- $r \ge 0$: constant interest rate

The (one) state variable is K, the (two) controls are t_1, t_2 .

★ E ► < E ► E</p>

Department of Economics University of Chicago

Different Firms/Industries

Different industries or firms value industry-specific human capital differently. For industry *j*:

 $K_i^j(t) =$ industry-specific experience for industry *j*.

The wage in industry *j* depends on both general human capital and the specific experience in that industry:

$$w^{j}(t) = w_{0}^{j}\left(\gamma_{1}K_{g}(t) + \gamma_{2}K_{i}^{j}(t)\right),$$

where w_0^j represents the base wage rate in industry *j*, which could vary across industries.

And earnings are product of wage and time working and "effectiveness":

$$E = w(1-s)K$$

イロト イポト イヨト イヨト

Lauren Qu

General Knowledge (Accumulated via Education):

$$\dot{K}_g(t) = \beta_g t_2 K_g(t),$$

where t_2 represents the time spent on education, and β_g represents the productivity of education in increasing general human capital. Industry-Specific Experience (Accumulated via Internships):

$$\dot{K}_i^j(t) = \beta_i^j t_1^j K_i^j(t),$$

where t_1^j is the time spent on internships in industry j, and β_i^j represents the productivity of internships in increasing industry-specific human capital for industry j.

Department of Economics University of Chicago

Optimization Problem

The individual maximizes the PDV of lifetime income across different industries or firms, considering the costs of internships (industry-specific experience) and education (general knowledge):

$$\max_{t_1(t), t_2(t)} \int_0^T e^{-rt} \left[w_0^j \left(\gamma_1 \mathcal{K}_g(t) + \gamma_2 \mathcal{K}_i^j(t) \right) \right. \\ \left. \left(1 - t_1(t) - t_2(t) \right) - \rho_1^j t_1(t) - \rho_2 t_2(t) \right] dt, \qquad (1)$$

where:

- $t_1(t)$ is the time allocated to internships in industry j,
- $t_2(t)$ is the time allocated to education (general knowledge),
- w_0^j is the wage in industry j,
- p_1^j is the time cost of internships in industry j,
- p_2 is the time cost of education.

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Hamiltonian for this optimization problem is:

$$H(t, \mathcal{K}_{g}, \mathcal{K}_{i}^{j}, t_{1}, t_{2}, \lambda_{g}, \lambda_{i}^{j}) = e^{-rt} \left[w_{0}^{j} \left(\gamma_{1} \mathcal{K}_{g} + \gamma_{2} \mathcal{K}_{i}^{j} \right) (1 - t_{1} - t_{2}) \right. \\ \left. - p_{1}^{j} t_{1} - p_{2} t_{2} \right] + \lambda_{g} \beta_{g} t_{2} \mathcal{K}_{g} + \lambda_{i}^{j} \beta_{i}^{j} t_{1} \mathcal{K}_{i}^{j},$$

$$(2)$$

where λ_g and λ_i^j are the co-state variables corresponding to general and industry-specific HC.

- λrepresents the shadow price or marginal value of an additional unit of corresponding HC.
- It indicates how much additional lifetime income can be generated from investing one more unit of effort into accumulating specific HC.

For $t_1(t)$ (internship time in industry *j*):

$$\frac{\partial H}{\partial t_1} = -e^{-rt}w_0^j\gamma_2K_i^j + \lambda_i^j\beta_i^jK_i^j - e^{-rt}\rho_1^j = 0,$$

For $t_2(t)$ (education time):

$$\frac{\partial H}{\partial t_2} = -e^{-rt} w_0^j \gamma_1 K_g + \lambda_g \beta_g K_g - e^{-rt} p_2 = 0,$$

Law of Motion for K(t):

$$\dot{K}(t) = \gamma_1 \beta_g t_2(t) \mathcal{K}_g(t) + \gamma_2 \beta_i^j t_1(t) \mathcal{K}_i^j(t).$$

Law of Motion for $\lambda(t)$:

$$\dot{\lambda}_g(t) = -\left(e^{-rt}w_0^j\gamma_1(1-t_1(t)-t_2(t))+\lambda_g\beta_gt_2(t)\right),$$

$$\dot{\lambda}_{i}^{j}(t) = -\left(e^{-rt}w_{0}^{j}\gamma_{2}(1-t_{1}(t)-t_{2}(t)) + \lambda_{i}^{j}\beta_{i}^{j}t_{1}(t)\right), \quad \text{if } \eta_{2}^{j} = 0$$

Department of Economics University of Chicago

Lauren Qu

Internship or Schooling?

Lauren Qu

Internship or Schooling?

Using the first-order conditions, we can determine the optimal time allocation between internships in industry j and education. At the optimal point, the marginal benefit of spending time on internships (industry-specific) should equal the marginal benefit of spending time on education (general knowledge):

$$\frac{w_0^j \gamma_2 + p_1^j}{\beta_i^j K_i^j} = \frac{w_0^j \gamma_1 + p_2}{\beta_g K_g}$$

This equation provides the optimal trade-off between time spent on internships and time spent on education, balancing the benefits of accumulating industry-specific experience and general knowledge.

・ 回 ト ・ ヨ ト ・ ヨ ト

Steady State

Since the total human capital K(t) is the weighted sum of $K_g(t)$ and $K_i^j(t)$, the $\dot{\lambda}$, which is negative partial derivative of H with respect to K(t) can be written as:

$$-\dot{\lambda} = \frac{\partial H}{\partial K(t)} = \gamma_1 \frac{\partial H}{\partial K_g(t)} + \gamma_2 \frac{\partial H}{\partial K_i^j(t)}$$

We can solve for the relative time allocation $t_1(t)$ and $t_2(t)$, when $\dot{\lambda} = 0$:

$$\frac{t_1(t)}{t_2(t)} = \frac{\gamma_2 \beta_g}{\gamma_1 \beta_i^j}.$$

This equation shows how time should be divided between internships in industry j and education, based on their respective marginal benefits, costs, and productivity.

Intuition

- The individual will allocate time to both internships and education in a way that balances the benefits of industry-specific and general knowledge accumulation.
- The optimal time allocation depends on the relative wages in industry *j*, the costs of internships and education, and their productivity in increasing human capital.
- As the individual will only work in one industry at the end, they will prioritize accumulating industry-specific experience in that industry while still investing in general education to maximize lifetime earnings.

- External idiosyncratic shocks on industry?
- Search & Match Model, heterogeneous individual needs to find the right industry?
- TBD

⇒ →

< 17 >

Lauren Qu